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Hopping numerical approximations of the hyperbolic equation
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SUMMARY

Polynomial functions can be used to derive numerical schemes for an approximate solution of hyperbolic
equations. A conventional derivation technique requires a polynomial to pass through every node values
of a continuous computational stencil, leading to severe manifestation of the Gibbs phenomenon and strict
time-step limitation. To overcome the problem, this paper introduces polynomials that skip regularly (‘hop’
over) one or more nodes from the computational grid. Polynomials hopping over odd and even nodes
yield a series of explicit numerical schemes of a required accuracy, with Lax–Friedrichs method being a
particular simplest case. The schemes have two times wider stability interval compared to conventional
continuous-stencil explicit methods. Convex combinations of odd- and even-node-based updates improve
further accuracy and stability of the method. Out of considered combinations (up to third-order accuracy),
derived odd-order methods are stable for the Courant number ranging from 0 to 3, and even-order ones
from 0 to 5. A 2-D extension of the hopping polynomial method exhibits similar properties. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The quest for accurate and efficient numerical solutions of the hyperbolic conservation law

��

�t
+ �u�

�x
= 0 (1)

is still far from completion. Here, �(t, x) is the transported scalar, u is the uniform velocity posi-
tive along the increasing x space coordinate, t is the time. Equation (1) is considered as a simplified
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Figure 1. Sketch of a computational cell.

xi−1 xd xi xi−1 xd xi

P(�)
n

n+1

n

n+1

n

(a) (b)

n+1�i
n+1�i

�� ��

�⋅�� �⋅��

�t �t
(�E)i (�E)i(�W)i (�W)i

�i−1
n�i−1

n�i+1
n�i+1

(�W)i+2(�E)i−2

P(�)
n�i

n�i

n+1

n

(c)

( fW)i( f E)i−1 ( fE)i ( fW)i+1

n+1�i

��

xi−1 xd xi
�⋅��

�t

n�i−1
n�i+1P(�) n�i

Figure 2. Sketch of computational cells having width: (a) �� = �x , (b) and (c) �� = 2�x .

model for a wide range of heat and mass transport problems in fluids. For a space–time grid (as
in Figure 1), integration of Equation (1) over �� and �t gives the finite-volume formulation

�n+1
i = �n

i − (FE)i + (FW)i (2)

Here, the bars indicate spatial averages over computational cell i at time levels n and (n+ 1), and
east and west time-averaged fluxes have been introduced as (FE)i = �(�E)i and (FW)i = �(�W)i ;
where (�E)i and (�W)i are the east and west time-averaged face values of the transported scalar,
and � is the computational Courant number:

� = u�t/�� (3)

where �t = tn+1 − tn is the time step and �� is the size of the computational cell.
Importantly, size of a computational cell �� need not necessarily equal the grid cell size �x , as

illustrated in Figure 2. At a uniform grid in space-and-time domain, if the computational cell is a
rectangle with the lower left corner at the point (tn, xi−1/2) and the upper right one at (tn+1, xi+1/2),
as in Figure 2(a), then �� = (xi+1/2 − xi−1/2) = �x . If the computational cell consists of two grid
cells as in Figure 2(b), then �� = (xi+1 − xi−1) = 2�x .
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HOPPING APPROXIMATIONS 1173

Conservation of mass by approximation (2) is guaranteed, if FW of i th computational cell
is equal to FE of the adjacent one from the left. Problem (1) can be reformulated as to find
(reconstruct) fluxes FE, FW, satisfying Equation (2) up to a required order of accuracy. There
are several methods available to obtain high-order (higher than first) reconstructions; however, if
special algorithmic precautions (the so-called flux limiters) are not applied, the approximations
seem inevitably lead to spurious oscillations of the numerical solution. The limiters decrease an
order of approximation in areas where oscillations might occur, and make resulting algorithms
less efficient. Computational scientists spend decades to balance often contradicting requirements
within a single scheme, but the problem is still far from being completely resolved. Unable to fit
growing computational demands, the traditional approach to have a single flux expression, single
computational stencil, or single grid is giving a way to more aggressive hybrid schemes with
embedded automatic choice of the best flux, stencil, or grid. This trend is observed particularly in
the development of ENO [1] and WENO [2] schemes. WENO scheme assigns each computational
cell to several corresponding stencils and to a convexly weighted combination of the corresponding
interpolating polynomials. Using computationally intensive logic, the weights are chosen to achieve
the essentially non-oscillatory property that is important for shock wave computations. However,
in many linear applications of heat and mass transport the sharp gradients are absent, and a focus
of new schemes’ development can be shifted to improvement of some other important properties,
such as stability range. Thus, the idea to use a convex combination of schemes and stencils to
improve efficiency of numerical algorithms has partially influenced this paper.

Another inspiration is given by Lax–Friedrichs (LxF) method [3]:
�n+1
i = 1

2 (�
n
i+1 + �n

i−1) − 1
2 (c�

n
i+1 − c�n

i−1) (4)

The scheme can be derived by requiring that the first-degree polynomial P(1)
i (c)= gi +hi c, defined

at [xi−1, xi+1], misses the central node value �n
i while passing through values at both sides of the

interval. Here, gi and hi are the coefficients to be determined; c is the local variable, corresponding
to the grid Courant number

c= u�t/�x (5)

�x is the grid size. In terms of the grid Courant number, the LxF scheme is stable at −1�c�1 (two
grid cells), which looks atypical for odd-order schemes known to be stable at a single grid cell (see
extensive discussions of Leonard [4]). However, in terms of the computational Courant number,
this is a single computational cell �� = 2�x and the LxF scheme still holds the conventional single-
computational-cell stability condition |�|�1/2, which follows from definition (3) and is illustrated
in Figure 2(b). Two lessons can be learned from the basic LxF scheme: (1) the computational cell
does not need to coincide with the grid-cell and (2) high-order LxF-type schemes can be derived
using high-degree polynomials passing through every second node.

One can adjoin any number (l) of grid cells into a single computational cell as �� = l�x and
construct first-order LxF-type scheme at the extended stencil. In terms of grid- and computational-
Courant numbers, the conventional (equal-or-less-than-a-unity) CFL condition extends to respective
stability criteria

|c|� l

2
or |�|�1

2
(6)
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1174 P. TKALICH

The second condition in relationships (6) stems from definition (3) and the fact that LxF scheme
is centred in space.

2. BASICS OF HOPPING APPROXIMATIONS

2.1. Suppression of the Gibbs phenomenon

For smooth solutions, the higher the order of the approximation, the better the accuracy; however,
in the vicinity of discontinuities or shock fronts the Gibbs phenomenon may lead to spurious
oscillations. By increasing the order of approximation one can reduce the ripples, but cannot get
rid of them completely. Richards [5] shows that the overshot tends to the typical 8.95% of shock
magnitude as the degree of spline approximation approaches infinity. Almost all existing treatments
for the Gibbs phenomenon reduction fall in the direction of summability (or averaging) methods,
such as of Fejér [6] or Lanczos [7]. In particular, some suppression of oscillations can be achieved
combining two or more periodic approximating functions having different phases. Figure 3 shows
an example of ripples amplitude reduction by a factor of

√
2 after averaging two sine functions

shifted �/2 relatively each other. Similar shift can be achieved numerically letting the functions to
pass through alternative sets of odd and even nodes of a computational grid. One expects further
improvement of the oscillation suppression by combining a larger number and variety of carefully
selected functions.

Extending the idea to Lagrange polynomials, it is clear that a combination of two approximations,
one utilizing even node and another odd ones, would require introduction of a computational cell
consisting of two grid cells, as in Figure 2(b). In this case each of the polynomials ‘hops’ over nodes
of the partner polynomial. Figure 4 illustrates approximation of a step function by two fifth-degree
hopping polynomials (HOPs), P(5)

1 at stencil {x0, x2, . . . , x10} and P(5)
2 at stencil {x−1, x1, . . . , x9},

as compared with the conventional fifth-degree polynomial P(5)
5 at {x0, x1, . . . , x5}.

Figure 3. Sketch of the Gibbs phenomenon suppression by averaging two periodic curves passing through
alternative grid-node sets (©-odd and �-even).
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HOPPING APPROXIMATIONS 1175

Figure 4. Square wave approximation using different combinations of hopping polynomials.

The step function is set to zero at nodes having indices less than or equal 1, and a unity
otherwise; and an approximation error is compared at interval [0, 5] according to the measure

�= ∑
i

|�i − �∗
i |

/∑
i

|�∗
i | (7)

where �∗ is the exact solution, and � is the numerical one. Polynomial P(5)
1 approximates the func-

tion with the error �1 = 0.229, which is comparable with that of the polynomial P(5)
2 (�2 = 0.214).

Polynomial P(5)
5 has smaller error (�5 = 0.168), but exhibits more intensive wiggling. Average of

two polynomials, P(5)
3 = (P(5)

1 + P(5)
2 )/2, demonstrates a smooth approximation with smaller error

�3 = 0.123. Convex combination P(5)
4 = (1 − x/5)P(5)

1 + (x/5)P(5)
2 with the error �4 = 0.178 is

less accurate than P(5)
3 and P(5)

5 , but still much better as compared with P(5)
1 and P(5)

2 alone.

Approximation P(5)
6 = (P(5)

4 + P(5)
5 )/2 with the error �6 = 0.099 is an overall champion of the

experiments. The trend is clear that a convex combination of polynomials is suppressing the Gibbs
phenomenon, otherwise severe for each of the constituent polynomials.

2.2. Derivation of numerical schemes using polynomials

Algorithm (2) has to be completed by choosing one of available methods of flux reconstruction. In
this paper, Lagrange polynomial at time level tn is used to find a single-step update at time level
tn+1, from which the flux expression is recovered. Semi-Lagrangian technique yields an exact
solution of Equation (1) over time �t as (Figure 2)

�n+1
i =�(tn+1, xi ) = �(tn, xd) (8)

expressing the concept that transported scalar properties at the departure point (tn, xd) are advected
to the arrival point (tn+1, xi ) without changing. (Here and further down, some terminology of
Leonard (2002) is adopted.) The transported scalar value at the departure point (tn, xd) can be
approximated with the polynomial

�(tn, xd) = P(M)(�) =
M∑

m=0
�mbm (9)
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1176 P. TKALICH

Here, M is the degree of the polynomial, and unknown coefficients B= {bm}m=0,M depend on
values of the transported scalar � at nodes of the computational stencil X= {xk}k=0,M . To define
uniquely coefficients B using Lagrange polynomial elements, M + 1 linear equations P(xk) =�n

k
can be formulated, requiring that the polynomial passes through every node of the computational
stencil X, i.e.

M∑
m=0

amkbm = �n
k (10)

A matrix form of Equations (10) is AB=U, where components of matrix A= {amk} and vector
U={�n

k } are known, and vector B has to be identified. Solution of the system can be obtained
by finding the inverse matrix A−1, and then B=A−1U. Finally, combining Equations (8) and (9),
and substituting found coefficients {bm}, one obtains explicit single-step update

�n+1
i = P(M)(�) (11)

To match conservative form (2), the east-face flux can be derived equalizing right-hand sides of
Equations (2) and (11), leading to

(FE)i = �n
i − P(M)(�) + (FE)west neighbor cell (12)

Using HOPs of degree up to third, a series of schemes is deduced in the paper. The derivation is
limited to polynomials hopping over a single node only; even though the method allows skipping
any number of nodes. For a convenience of reference all schemes are identified by the upper
index ‘kHm’, where ‘k’ refers to the order of approximation, ‘m’ is to quantify a stencil bias in
upwind direction relatively the arrival point xi , and ‘H’ indicates usage of HOPs in the derivation.
For a consistency with previous findings, the order of accuracy of the schemes developed in this
paper is given in terms of ��, if otherwise is not stated. Following the tendency of conventional
passing-through-each-grid-node polynomials, it is expected that an M th degree HOP produces
M th-order (in ��) accuracy scheme with the truncation error

e∼ 0(��M ) ∼ 0(lM�xM ) (13)

Relationship (13) indicates that the error increases with a number of grid cells (l) included in the
in a single computational cell.

A series of numerical tests is performed to compare the performance of the schemes. In one of
the tests, an idealized 1-D computational domain consists of 10 000 nodes, numbered from left to
right, with the grid size �x = 100m. A uniform velocity u = 1m/s is set in the entire domain. The
initial zero values are set in the domain, except for the interval (150�x, 250�x), where �0 = 1. It
is expected that for a pure advection an ideal numerical scheme does not introduce a distortion into
the initial shape, while moving it with the flow. Computations are conducted to allow the initial
profile to advect to the opposite side of the domain, where numerical solutions are compared with
the exact one.

3. HIERARCHY OF HOPPING SCHEMES

Since, a computational stencil may skip each second node, two cases are possible: (a) the arrival
point xi is omitted from the departure stencil, such as {. . . , xi−3, xi−1, xi+1, . . .}; and (b) the arrival
point belongs to the departure stencil, as {. . . , xi−2, xi , xi+2, . . .}.
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HOPPING APPROXIMATIONS 1177

In the first case (a) the conservative form (2) leads to

�n+1
i = �̃n

i − (FE)i + (FW)i (14a)

where the capital letter F identifies the double-grid-cell (DGC) fluxes, as illustrated in Figures 1
and 2(b); mass conservation is guaranteed if (FW)i = (FE)i−2; and �̃n

i approximates value of the
transported scalar at point (tn, xi ).

In the second case (b), conservative form (2) simplifies to

�n+1
i = �n

i − (FE)i + (FW)i , (FW)i = (FE)i−2 (14b)

For computational efficiency, Equations (14) can be rewritten uniquely in terms of single-grid-cell
(SGC) pseudo-fluxes fE and fW (see Figure 2(c)) in order to utilize the conservative finite-volume
form

�n+1
i = �n

i − ( fE)i + ( fW)i , ( fW)i = ( fE)i−1 (15)

where

( fE)i = ( f̃E)i + (FE)i + (FE)i−1 (16)

Functions, f̃E and f̃W, can be identified knowing that

�̃n
i = �n

i − ( f̃E)i + ( f̃W)i and ( f̃W)i = ( f̃E)i−1 (17a)

In the particular case of (14b), relationships (17a) are simplified to

�̃n
i = �n

i and ( f̃W)i = ( f̃E)i = 0 (17b)

In this paper, the schemes are derived only for positive velocities u; however, the algorithms
can be rewritten straightforwardly for the opposite direction. Derived stencils are summarized in
Figure 5, and stability regions are analysed graphically in Figure 6, where values of amplification

i-4 i-2 i+2

2H1

2H0

3H0

1H1

1H2 1H0

3H1

i

Figure 5. Stencils for some HOP schemes.
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Figure 6. Amplification factor modulus |G| for some HOP schemes: (a) 1H0 (LxF) and 1H1; (b) 2H0
and 2H2; and (c) 3H0 and 3H1. � is the phase angle.

factor modulus less-than-a-unity are encircled by hatched curves. Here the von Neumann stability
analysis is utilized, where solution of Equation (15) is sought in the form �n

i = gn exp(Ii�), where
� = K�x is the phase angle, gn is the amplitude of the Fourier component at n�t , K is the wave
number; I= √−1. A difference scheme is considered stable for a chosen value of the Courant
number c, if a modulus of amplification factor |G(�, c)| = |gn+1/gn| is less or equal a unity for
all phase angles over one complete time step.

For the first-degree polynomial (M = 1 in Equation (9)) defined at two nodes {xi−1, xi+1} the
first-order central in space single-step update

(�n+1
i )1H0 = 1

2 [(1 − c)�n
i+1 + (1 + c)�n

i−1] (18)

is recognized as LxF scheme (4). One can obtain the DGC form (14a) using relationships
(�̃n

i )
1H0 = (�n

i+1 + �n
i−1)/2 and (FE)1H0

i = c�n
i+1/2, or SGC form (15) using expression for the

east-face pseudo-flux

( fE)1H0
i =− 1

2 (�
n
i+1 − �n

i ) + 1
2c(�

n
i+1 + �n

i ) (19)
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Estimation (13) for l = 2 and M = 1 suggests that LxF scheme is two times more diffusive than
a first order in �x scheme. Indeed, for the first-order upwind (1UP) scheme

(�n+1
i )1UP =�n

i − c(�n
i − �n

i−1) (20)

the numerical viscosity is derived as

(�)1UP = u

2
(1 − c)�x

whereas LxF scheme (18) has the viscosity

(�)1H0 = u

2c
(1 − c2)�x

Ratio of numerical viscosities of LxF and 1UP methods (�)1H0/(�)1UP = (1+c)/c tends to 2 when
the Courant number tends to a unity, i.e. estimation (13) is valid.

Defining first-degree polynomial (9) at nodes {xi−2, xi }, the first-order upwind update follows

(�n+1
i )1H1 = 1

2 [(2 − c)�n
i + c�n

i−2] (21)

The scheme is stable at the interval [xi−2, xi ], leading to the stability condition 0�c�2 (lower
horizontal axis in Figure 6(a)). Due to the fact that the arrival point xi belongs to the departure
stencil {xi−2, xi }, relationships (14b) and (17b) are valid, and DGC and SGC fluxes become,
respectively,

(FE)1H1
i = 1

2c�
n
i and ( fE)1H1

i = 1
2 (c�

n
i + c�n

i−1) (22)

Shifting the computational stencil further and further upwind relatively the arrival node, one
obtains sequentially conservative formulations (14a) or (14b), which can be rewritten in SGC form
(15) using expressions (16) with definitions (17a) or (17b), respectively. Thus, the up-upwind
first-order update at the interval [xi−3, xi−1] is

(�n+1
i )1H2 = 1

2 [(3 − c)�n
i−1 − (1 − c)�n

i−3] (23)

One obtains the conservative form of 1H2 method substituting expressions

( f̃E)1H2
i = �n

i − 1
2 (�

n
i−1 + �n

i−2) and (FE)1H2
i = 1

2c�
n
i−1 (24)

into relationships (15) and (16). The scheme is conditionally stable at 1�c�3.
Second-degree polynomial (9) yields a series of second-order schemes. For the stencil

{xi−2, xi , xi+2}, the central in space single-step update follows

(�n+1
i )2H0 = 1

8 [−c(2 − c)�n
i+2 + 2(4 − c2)�n

i + c(2 + c)�n
i−2] (25)

Alternatively, DGC east-face flux

(FE)2H0
i = 1

8c[(2 − c)�n
i+2 + (2 + c)�n

i ] (26)
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and expression ( f̃E)2H0
i = 0 are useful for the conservative formulations (14b), (15) and (16).

Scheme (25) is stable at |c|�2 (four grid cells) as shown by the upper horizontal axis in
Figure 6(b).

Defining interpolant at stencil {xi−3, xi−1, xi+1}, one obtains second-order upwind update

(�n+1
i )2H1 = 1

8 [(1 − c)(3 − c)�n
i+1 + 2(1 + c)(3 − c)�n

i−1 − (1 − c2)�n
i−3] (27)

and respective DGC and SGC fluxes can be recovered using Equations (16), (17a) and

( f̃E)2H1
i = 1

8 (−3�n
i+1 + 5�n

i − �n
i−1 − �n

i−2)

(FE)2H1
i = 1

8c[(4 − c)�n
i+1 + c�n

i−1]
(28)

Here, (as always) west-face values are easily identified as ( f̃W)i = ( f̃E)i−1 and (FW)i = (FE)i−2
in order to utilize conservative formulations (14) and (15). Scheme (27) is stable at four grid cells
(−1�c�3). More upwind schemes are derived by shifting the stencil further upwind relatively the
arrival point xi , to positions {xi−4, xi−2, xi } and {xi−5, xi−3, xi−1}. In the first case, the single-step
update and fluxes are given by

(�n+1
i )2H2 = 1

8 [(2 − c)(4 − c)�n
i + 2c(4 − c)�n

i−2 − c(2 − c)�n
i−4] (29)

and

( f̃E)2H2
i = 0, (FE)2H2

i = 1
8c[(6 − c)�n

i − (2 − c)�n
i−2] (30)

In the second case, these are

(�n+1
i )2H3 = 1

8 [(3 − c)(5 − c)�n
i−1 − 2(1 − c)(5 − c)�n

i−3 + (1 − c)(3 − c)�n
i−5] (31)

and

( f̃E)2H3
i = 1

8 (8�
n
i − 7�n

i−1 − 7�n
i−2 + 3�n

i−3 + 3�n
i−4)

(FE)2H3
i = 1

8c[(8 − c)�n
i−1 − (4 − c)�n

i−3]
(32)

Schemes (29) and (31) are stable at [xi−4, xi ] and [xi−5, xi−1], respectively, yielding the stability
conditions 0�c�4 and 1�c�5.

Third-degree polynomial at the stencil {xi−3, xi−1, xi+1, xi+3} leads to the third-order central
update

(�n+1
i )3H0 = 1

48 [−(3 − c)(1 − c2)�n
i+3 + 3(1 − c)(9 − c2)�n

i+1

+ 3(1 + c)(9 − c2)�n
i−1 − (3 + c)(1 − c2)�n

i−3] (33)

Fluxes for the conservative formulations (14) and (15) can be computed using relationships

( f̃E)3H0
i = 1

16 (�
n
i+3 + �n

i+2 − 8�n
i+1 + 8�n

i − �n
i−1 − �n

i−2)

(FE)3H0
i = 1

48c[−(1 + 3c − c2)�n
i+3 + 2(13 − c2)�n

i+1 − (1 − 3c − c2)�n
i−1]

(34)
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Recall that ( f̃W)i = ( f̃E)i−1 and (FW)i = (FE)i−2. The scheme is stable at the interval [xi−1, xi+1],
leading to the stability condition |c|�1 (upper horizontal axis in Figure 6(c)).

Shifting computational stencil one node further upwind, another third-order single-step update
follows

(�n+1
i )3H1 = 1

48 [−c(2 − c)(4 − c)�n
i+2 + 3(4 − c2)(4 − c)�n

i

+ 3c(2 + c)(4 − c)�n
i−2 − c(4 − c2)�n

i−4] (35)

The respective east-face flux for DGC conservative formulation (14b) is

(FE)3H1
i = 1

48c[(2 − c)(4 − c)�n
i+2 + 2(2 + c)(5 − c)�n

i − (4 − c2)�n
i−2] (36)

Alternatively, SGC expression (15) can be utilized knowing that ( f̃E)3H1
i = 0. The scheme is stable

at the interval [xi−2, xi ] (0�c�2), as shown by the lower horizontal axis in Figure 6(c).
Third-degree polynomial at the stencil {xi−5, xi−3, xi−1, xi+1} yields update

(�n+1
i )3H2 = 1

48 [(1 − c)(3 − c)(5 − c)�n
i+1 + 3(1 + c)(3 − c)(5 − c)�n

i−1

− 3(1 − c2)(5 − c)�n
i−3 + (1 − c2)(3 − c)�n

i−5] (37)

Figure 7. Performance of some HOP schemes using the square wave propagation test.
(Only upwind half of the wave is shown.)
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Table I. Error measure due to application of HOP schemes for the square wave propagation test.

First-order methods Error � Second-order methods Error � Third-order methods Error �

1UP, c= 0.8 0.621 LW, c= 0.8 0.281 QUICKEST, c= 0.8 0.082
1H0 (LxF), c= 0.8 0.894 2H0, c= 0.8 0.640 3H1, c= 0.8 0.184
(1H1, 1H2, 3), c= 0.8 1.069 (2H2, 2H3, 5), c= 0.8 0.599 (3H1, 3H2, 3), c= 0.8 0.164
(1H1, 1H2, 3), c= 1.5 0.931 (2H2, 2H3, 5), c= 2.5 0.104 (3H1, 3H2, 3), c= 1.5 0.146
(1H1, 1H2, 3), c= 2.8 0.360 (2H2, 2H3, 5), c= 4.8 0.199 (3H1, 3H2, 3), c= 2.8 0.093

which is stable at [xi−3, xi−1] (1�c�3). The conservative forms (14) and (15) are applicable if

( f̃E)3H2
i = 1

16 (−5�n
i+1 + 11�n

i − 4�n
i−1 − 4�n

i−2 + �n
i−3 + �n

i−4)

(FE)3H2
i = 1

48c[(23 − 9c + c2)�n
i+1 − 3(7 − 7c + c2)�n

i−1 + (1 + 3c − c2)�n
i−3]

(38)

Summarizing stability regions of the derived schemes, it is clear that first-, third-, and higher-odd-
order algorithms are stable within a single computational cell (two grid cells), i.e. 0���1 (0�c�2);
while second-, fourth-, and higher-even-order ones are stable at two adjacent computational cells
(four grid cells), i.e. 0���2 (0�c�4). Similar trend has been observed earlier by Leonard (2002)
for the case of conventional methods. The derived schemes are compared using the square wave
propagation test (Figure 7), and the respective error measure is shown in Table I. Application
of the conventional methods such as 1UP, second-order central Lax–Wendroff (LW) [8, 9], and
third-order upwind QUICKEST by Leonard [10] are shown for a comparison.

Computations confirmed that even-order schemes result in more dispersive algorithms having
spurious trailing oscillations, whereas odd-order methods have better phase properties. Solution
splitting of HOP methods is easily recognized by a saw-like behaviour due to usage of alternative
node sets (odd and even). Increased truncation error, as predicted by Equation (13), is another
drawback of the algorithms.

4. CONVEX COMBINATIONS OF HOPPING POLYNOMIALS

Recalling effectiveness of convex combinations of HOPs explored in earlier sections, it is expected
that the linear operator

(�n+1
i )(A,B,k) = (1 − c/k)(�n+1

i )A + (c/k)(�n+1
i )B (39)

is a good candidate to satisfy simultaneously several requirements: to increase computational
time step, to ‘stitch’ the splitting solutions, to decrease the wiggling, and to increase overall
accuracy. Here, superscripts A and B identify utilized approximations, and k is the parameter.
Several combinations of A, B, and k, denoted as (A, B, k), have been tested to satisfy the above
requirements. Updates given by relationship (14b) are the best candidates for scheme A because
expression (39) would have an exact solution �n

i at c= 0; otherwise, if updates (14a) are used as
A, the combination tends to the approximate value �̃n

i when c→ 0. Consequently, to utilize an
alternative node set in combination (39), the B scheme must satisfy relationship (14a). Coefficient
k is chosen to provide a smooth, accurate, and stable transition from scheme A to B when c
increases from zero to its maximal stable value. Out of chosen combinations, the most promising
updates (1H1, 1H2, 3), (2H2, 2H3, 5) and (3H1, 3H2, 3) are compared in Figure 7 and Table I.
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First-order upwind update

(�n+1
i )(1H1,1H2,3) = (1 − c/3)(�n+1

i )1H1 + (c/3)(�n+1
i )1H2 (40)

which can also be rewritten in conservative form (15) using east-face flux value

( fE)
(1H1,1H2,3)
i = 1

6c[(5 − c)�n
i + 2�n

i−1 − (1 − c)�n
i−2] (41)

is stable at 0�c�3, as in Figure 8(a). Comparing with LxF scheme (1H0), the update (1H1,
1H2, 3) is less accurate at small Courant number, but more accurate for larger values of c. The
scheme does not exhibit any solution splitting.

Second-order upwind scheme is given by the combination

(�n+1
i )(2H2,2H3,5) = (1 − c/5)(�n+1

i )2H2 + (c/5)(�n+1
i )2H3 (42)

or in conservative form (15) by the east-face flux

( fE)
(2H2,2H3,5)
i = 1

40c[(c2 − 11c + 38)�n
i − (3c − 23)�n

i−1 − (2c2 − 15c + 17)�n
i−2

+ (3c − 7)�n
i−3 + (c2 − 4c + 3)�n

i−4] (43)

Figure 8. Amplification factor modulus |G| for convex combinations of HOP schemes: (a) (1H1, 1H2, 3);
(b) (2H2, 2H3, 5); and (c) (3H1, 3H2, 3).
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The scheme is stable at 0�c�5 (Figure 8(b)); it exhibits third-order properties for values c near
centre of the interval, and is second-order otherwise.

Third-order scheme

(�n+1
i )(3H1,3H2,3) = (1 − c/3)(�n+1

i )3H1 + (c/3)(�n+1
i )3H2 (44)

can be expressed in conservative form (15) using east-face flux

( fE)
(3H1,3H2,3)
i = 1

144c[−(c3 − 9c2 + 26c − 24)�n
i+2 − 3(c − 3)�n

i+1

+ 3(c3 − 7c2 + 7c + 31)�n
i + 48�n

i−1 − 3(c3 − 5c2 − 2c + 8)�n
i−2

+ 3(c − 3)�n
i−3 + (c3 − 3c2 − c + 3)�n

i−4] (45)

It is stable at 0�c�3, as shown in Figure 8(c).
Generally, all derived combinations of HOP schemes show a greater truncation error for a

small computational time step, as it is predicted by estimation (13); and the error reduces as the
Courant number increases. For large values c, schemes (1H1, 1H2, 3) and (2H2, 2H3, 5) are more
accurate than the conventional first- and second-order schemes; and, combination (3H1, 3H2, 3)
is almost as accurate as the third-order QUICKEST. None of considered convex combinations
exhibits solution splitting.

5. TWO-DIMENSIONAL HOPPING APPROXIMATIONS

The HOP solution technique is extendable for the 2-D hyperbolic equation

��

�t
+ �u�

�x
+ �v�

�y
= 0 (46)

where U= (u, v) is the uniform velocity field in 2-D space (x, y). Similar to the 1-D case (14),
one searches for a solution of Equation (46) in the conservative finite-volume form

�n+1
i, j = �n

i, j − (FE)i, j + (FW)i, j − (FN)i, j + (FS)i, j

(FW)i, j = (FE)i−2, j , (FS)i, j = (FN)i, j−2

(47)

where bars indicate spatial overages over computational cell (i, j), and the capital letter F still
identifies DGC east-, west-, north-, and south-face fluxes (FE)i, j , (FW)i, j , (FN)i, j , and (FS)i, j .

For a computational efficiency, similar to the 1-D SGC formulation (15), expression (47) has to
be rewritten in terms of SGC pseudo-fluxes as

�n+1
i, j = �n

i, j − ( fE)i, j + ( fW)i, j − ( fN)i, j + ( fS)i, j

( fW)i, j = ( fE)i−1, j , ( fS)i, j = ( fN)i, j−1

(48)

Here, ( fE)i, j , ( fW)i, j , ( fN)i, j , and ( fS)i, j are the east-, west-, north-, and south-face fluxes of the
(i, j)th grid cell at time-level n, as in Figure 9(a).

To demonstrate a potential of extension of the HOP method for two dimensions, only one
first-order scheme is derived; however, the technique could be followed for higher-order schemes
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Figure 9. Computational stencil of 2-D HOP method for the velocity as shown. Each of the involved hopping
polynomials utilizes four nodes identified as follows: ©-Pi, j ; �-Pi, j−1; ♦-Pi−1, j ; and - Pi−1, j−1.

as well. Analogically to the procedure established earlier in the paper, the following HOPs are
introduced as (for positive U, as in Figure 9(b))

Pi, j = 1
4 [(2 − c)(2 − d)�n

i, j + c(2 − d)�n
i−2, j

+ (2 − c)d�n
i, j−2 + cd�n

i−2, j−2]
Pi−1, j = 1

4 [(3 − c)(2 − d)�n
i−1, j − (1 − c)(2 − d)�n

i−3, j

+ (3 − c)d�n
i−1, j−2 − (1 − c)d�n

i−3, j−2]
Pi, j−1 = 1

4 [(2 − c)(3 − d)�n
i, j−1 + c(3 − d)�n

i−2, j−1

− (2 − c)(1 − d)�n
i, j−3 − c(1 − d)�n

i−2, j−3]
Pi−1, j−1 = 1

4 [(3 − c)(3 − d)�n
i−1, j−1 − (1 − c)(3 − d)�n

i−3, j−1

− (3 − c)(1 − d)�n
i−1, j−3 + (1 − c)(1 − d)�n

i−3, j−3]

(49)

Here, c= u�t/�y and d = v�t/�y are the components of 2-D Courant number C= (c, d). Each
of polynomials (49) represents bilinear interpolant hopping over one row and one column of nodes
as shown in Figure 9(b). More compact form of expressions (49) reads

Pi, j = Ei, j

Pi−1, j = Ei−1, j + Ri−1, j + dDi−1, j

Pi, j−1 = Ei, j−1 + Si, j−1 + cDi, j−1

Pi−1, j−1 = Ei−1, j−1 + Ri−1, j−1 + Si−1, j−1 + (c + d − 1 − cd)Di−1, j−1

(50)

where

Ei, j = �n
i, j − cRi, j − dSi, j − cdDi, j

Ri, j = (�n
i, j − �n

i−2, j )/2, Si, j = (�n
i, j − �n

i, j−2)/2

Di, j = −(�n
i, j − �n

i−2, j − �n
i, j−2 + �n

i−2, j−2)/4
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Derived relationships can be extended straightforwardly to arbitrary velocities by changing signs
‘−’ to ‘+’ in subscript space indices in the case of negative U.

According to the von Neumann stability analysis, the single-step updates

(�n+1
i, j )1H1,1 = Pi, j

(�n+1
i, j )1H2,1 = Pi−1, j

(�n+1
i, j )1H1,2 = Pi, j−1

(�n+1
i, j )1H2,2 = Pi−1, j−1

(51)

are stable within rectangles identified by the lower left and upper right corners as [(i − 2, j − 2),
(i, j)], [(i − 2, j − 3), (i, j − 1)], [(i − 3, j − 2), (i − 1, j)], and [(i − 3, j − 3), (i − 1, j − 1)],
respectively (Figure 9(b)). It is obvious that the scheme ‘1H1, 1’ reduces to ‘1H1’ for a 1-D
case; and ‘1H2, 2’ becomes ‘1H2’. Similar to the 1-D cases, 2-D schemes (51) exhibit saw-like
solutions due to usage of alternative node sets (odd and even); therefore, a convex combination
of the schemes is expected to ‘stitch’ the splitting solutions, increase maximal stable Courant
number and to improve overall accuracy of the resulting algorithm. Following the 1-D experience
(Equation (39)), a bilinear interpolant

�n+1
i, j = 1

9 [(3 − c)(3 − d)Pi, j + c(3 − d)Pi−1, j + (3 − c)dPi, j−1 + cd Pi−1, j−1] (52)

is expected to fulfil the requirements. Update (52) is the sought 2-D first-order upwind HOP
scheme. To satisfy conservative form (48), terms in Equation (52) must be regrouped in order to
recover expressions for the fluxes. The fluxes are not ‘true’ and unique in the spirit of the flux
integral method by Leonard et al. [11], because the flux splitting procedure does not guarantee
unique flux expressions in the 2-D case. However, it does not mean that a successful particular
solution cannot be found. One solution is obtained as

( fE)i, j = 1
18c[((6 − d)Ei, j + dEi, j−1) + 2d(Si, j−1 − Si, j − Si−1, j )

+ d(5Di, j − (1 − 2c)Di, j−1) + 6(Ri, j + �n
i, j + �n

i−1, j )]
( fN)i, j = 1

18d[((6 − c)Ei, j + cEi−1, j ) + 2c(Ri−1, j − Ri, j − Ri, j−1)

+ c(5Di, j − (1 − 2d)Di−1, j ) + 6(Si, j + �n
i, j + �n

i, j−1)]

(53)

To conserve mass, western and southern fluxes are taken as ( fW)i, j = ( fE)i−1, j and ( fS)i, j =
( fN)i, j−1, respectively.

The derived 2-D HOP method (Equations (48) and (53)) is thoroughly tested. One of the tests
is a complete round of a clockwise rotation of the ‘Gaussian hill’ (Figure 10 and Table II). If
solved exactly, the ‘hill’ returns to its original place maintaining the initial form. A numerical
approximation introduces relative error

�=∑
i, j

|�i, j − �∗
i, j |

/∑
i, j

|�∗
i, j | (54)
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Figure 10. Initial profile for 2-D test case.

Table II. Performance of 2-D first-order upwind and HOP scheme using the rotational flow test with
different maximal Courant number.

1UP, Cmax = 1 HOP, Cmax = 1 HOP, Cmax = 3

�x,�y (km) �� � �t �� � �t �� � �t

2 0.675 0.776 1 0.751 0.928 1.002 0.677 0.779 0.348
1 0.513 0.516 1 0.602 0.657 1.019 0.513 0.516 0.347
0.5 0.347 0.311 1 0.433 0.416 1.094 0.347 0.311 0.370
0.25 0.211 0.174 1 0.278 0.242 1.257 0.211 0.174 0.419

Note: Maximum absolute error (��), error measure (�), and relative required computational time (�t) are
compared.

where �∗ is the exact solution, and � is the numerical one. Maximal absolute error

��= max
i, j

|�i, j − �∗
i, j | (55)

is also an important characteristic. To perform a grid refinement test, the constant-depth domain
(200 × 200) km is covered by a mesh with the grid sizes �x = �y = (2, 1, 0.5 and 0.25) km,
leading to computational grids with (101× 101), (201× 201), (401× 401) and (801× 801) nodes,
respectively. Two different time steps are considered, to provide the maximal Courant number of
1 and 3. Execution time and solution of the 2-D HOP method is compared with the conventional
2-D 1UP method.

Numerical experiments show that the 2-D HOP method is stable within a large square 0�c�3,
0�d�3, comparing with the conventional stability criterion 0�c�1, 0�d�1 of the conventional
1UP scheme. Even though, the execution time of the HOP method is slightly longer for the Courant
number near or below a unity, the algorithm is up to three times faster than 1UP for large C.
HOP is slightly more diffusive for small time steps, and is equally accurate with 1UP at large C
(Figure 11). Overall, the HOP method demonstrates a good performance and high efficiency.
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Figure 11. Exact and computed solutions of the 2-D Gaussian hill rotation using first-order upwind and
HOP schemes: (a) x cross-section and (b) y cross-section.

6. CONCLUSIONS

Using hopping polynomial (HOP) approximations of up to third-order of accuracy, a set of new
explicit numerical methods has been developed for the hyperbolic equation solution. To widen
stability interval, HOP stencils skip odd or even nodes of a computational grid. Derived odd- and
even-node-based updates are convexly combined to overcome the solution splitting, and to improve
overall accuracy and stability of the resulting scheme. Derived explicit odd-order approximations
are stable for the Courant number ranging from 0 to 3, and even-order schemes are stable at for up to
C = 5. A straightforward technique of HOPmethod extension for two dimensions is suggested using
first-order upwind algorithm as an example. Computational tests show a substantial robustness,
efficiency and accuracy of the HOP method.
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